Карбоновые кислоты: физические свойства. Соли карбоновых кислот

Как вы уже знаете, общим способом получения карбоновых кислот может служить окисление соответствующего альдегида согласно уравнению

В промышленности этот процесс проводят с помощью кислорода воздуха в присутствии катализаторов.

Анализируя общую формулу карбоновых кислот, можно заметить, что в состав ее молекулы входят две части - углеводородный радикал (алкил) и функциональная группа

которую называют карбоксильной. Название функциональной группы произошло от названий образующих ее карбонила >С=0 и гидроксила -ОН.

Класс карбоновых кислот чрезвычайно многообразен. В него входят одно-, двух- и многоосновные кислоты, непредельные и ароматические. Но эти подклассы карбоновых кислот являются предметом изучения в школах и классах естественнонаучного профиля. Мы лишь упомянем о двух непредельных кислотах: С 17 Н 33 СООН - олеиновой кислоте (содержит в молекуле одну двойную связь) (рис. 50) и С 17 Н 31 СООН - линолевой кислоте (содержит в молекуле две двойные связи). Эти кислоты называют жирными, и теперь, очевидно, вам стало понятно, почему мы обращаем ваше внимание на эти кислоты - они входят в состав жидких жиров.

Рис. 50.
Масштабная модель молекулы олеиновой кислоты

Однако вернемся к предельным одноосновным карбоновым кислотам. Начинает гомологический ряд этих кислот соединение, которое не полностью отвечает приведенному выше определению, - муравьиная, или метановая, кислота

Как видно, карбоксил в ее молекуле связан не с углеводородным радикалом, а с атомом водорода, как и карбонил в муравьином альдегиде (рис. 51).

Рис. 51.
Модель молекулы муравьиной (метановой) кислоты:

Очевидно, что названия кислот и соответствующих им альдегидов идентичны.

То, что строение муравьиной кислоты отличается от строения молекул других одноосновных карбоновых кислот, обусловливает и особенности ее химических свойств. Она вступает в реакцию «серебряного зеркала» подобно альдегидам, так как ее молекула представляет собой синтез двух функциональных групп: карбонильной и карбоксильной.

Муравьиная кислота - это жидкость с резким запахом (t кип = 100,8 °С), хорошо растворимая в воде. Муравьиная кислота ядовита! При попадании на кожу она вызывает ожоги. Жалящая жидкость, выделяемая муравьями, крапивой, некоторыми видами медуз, содержит эту кислоту (рис. 52).

Рис. 52.
Муравьиную кислоту содержит жалящая жидкость:
1 - медуз; 2 - крапивы; 3 - муравьев

Муравьиная кислота обладает дезинфицирующим действием и поэтому находит применение в пищевой, кожевенной и фармацевтической промышленности, а также в медицине. Кроме этого, ее используют при крашении тканей и бумаги (рис. 53).

Рис. 53.
Применение муравьиной кислоты:
1 - кожевенная промышленность; 2 - крашение тканей; 3 - медицина

Уксусная, или этановая, кислота

(рис. 54) - это бесцветная жидкость с характерным резким запахом, смешивается с водой в любых отношениях. Водные растворы уксусной кислоты поступают в продажу под названием «столовый уксус» (3-5%-й раствор), «уксусная эссенция» (70-80%-й раствор) и широко используются в пищевой промышленности.

Рис. 54.
Модель молекулы уксусной (этановой) кислоты:
1 - шаростержневая; 2 - масштабная

Уксусная кислота - хороший растворитель многих органических соединений, применяется при крашении, в кожевенном производстве, лакокрасочной промышленности (рис. 55). Кроме этого, уксусная кислота является исходным сырьем для производства многих важных в техническом отношении органических соединений: искусственных волокон, ядохимикатов, кино- и фотопленок и т. д. Уксусная кислота чрезвычайно опасна при попадании на кожу, поэтому необходимо соблюдать меры безопасности при работе с уксусной эссенцией.

Рис. 55.
Применение уксусной кислоты:
1 - консервирование; 2 - производство искусственных волокон, тканей; 3 - приправа к пище; 4-8 - производство органических соединений (пестицидов 4, лаков 5, красок 6, фотопленки 7, клея 8)

С увеличением относительной молекулярной массы в гомологическом ряду предельных одноосновных карбоновых кислот увеличиваются их плотность, температуры кипения и плавления, уменьшается растворимость в воде.

Высшие карбоновые кислоты, также называемые жирными (догадались почему), являются твердыми веществами. Это, например, пальмитиновая С 15 Н 31 СООН (рис. 56, 1) и стеариновая С 17 Н 35 СООН кислоты (рис. 56, 2).

Рис. 56.
Масштабные модели молекул:
1 - пальмитиновой кислоты; 2 - стеариновой кислоты

Химические свойства карбоновых кислот определяются в первую очередь их принадлежностью к типу кислот вообще. Подобно неорганическим кислотам, карбоновые кислоты являются электролитами, правда очень слабыми, а потому диссоциируют обратимо:

Водные растворы карбоновых кислот изменяют окраску индикаторов.

С увеличением углеводородного радикала происходит уменьшение степени электролитической диссоциации.

Как и неорганические кислоты, карбоновые взаимодействуют с металлами, основными и амфотерными оксидами, основаниями, амфотерными гидроксидами и солями.

Так, муравьиная и уксусная кислоты взаимодействуют с металлами, стоящими в электрохимическом ряду напряжений до водорода:

Эти кислоты реагируют с основными и амфотерными оксидами с образованием солей - формиатов и ацетатов:

Аналогично муравьиная и уксусная кислоты взаимодействуют с основаниями и амфотерными гидроксидами:

Взаимодействуют эти кислоты с солями более слабых кислот. Реакции идут до конца, если образуется осадок или газ:

Органические кислоты, как вы уже знаете, вступают в реакцию этерификации со спиртами, образуя сложные эфиры, согласно уравнению

Новые слова и понятия

  1. Карбоксильная группа.
  2. Карбоновые кислоты. Предельные одноосновные карбоновые кислоты.
  3. Непредельные карбоновые кислоты: олеиновая и линолевая.
  4. Муравьиная и уксусная кислоты.
  5. Свойства карбоновых кислот: взаимодействие с металлами, основными и амфотерными оксидами, основаниями, амфотерными гидроксидами и солями.
  6. Формиаты и ацетаты.
  7. Реакция этерификации. Сложные эфиры.
  8. Применение карбоновых кислот.

Вопросы и задания

1. Какие вещества называют предельными одноосновными карбоновыми кислотами?
Предельные одноосновные карбоновые кислоты – это органические соединения, молекулы которых содержат одну карбоксильную группу и насыщенный углеводородный радикал.

2. Рассмотрите переход количественных изменений в качественные на примере изменения физических свойств карбоновых кислот в гомологическом ряду.
С ростом молярной массы увеличивается температура плавления и кипения, растет плотность вещества. Первые девять представителей гомологического ряда – жидкости, с десятого и выше – твердые вещества.

3. Какие свойства являются общими для неорганических и карбоновых кислот? Подтвердите свой ответ уравнениями реакций.

4. В какие реакции могут вступать олеиновые и линолевые кислоты как непредельные органические соединения? Как называют эти реакции? Запишите их уравнения.

5. Структурную формулу муравьиной кислоты можно записать и таким образом . Следовательно, эта кислота будет являться веществом с двойственной функцией. Как можно назвать ее? Какую реакцию, характерную для других кислот, даст муравьиная кислота?

6. Запишите уравнения реакций, с помощью которых можно осуществить следующие превращения:

7. Какое вещество вызывает жалящее действие крапивы и стрекательных клеток медуз? Как снять боль от ожогов, вызванных выделениями этих организмов?
Жалящее действие вызвано муравьиной кислотой. Для уменьшения болевых ощущений место поражения необходимо обработать раствором соды для нейтрализации кислоты.

8. В уксусной кислоте растворили 250 г известняка, содержащего 20% примесей, и получили при этом 33,6 л (н.у.) углекислого газа. Какую объемную долю составляет выход углекислого газа от теоретически возможного?

9. Царица Клеопатра по совету придворного медика растворила в уксусе самую крупную из известных ювелирам жемчужину, а затем принимала полученный раствор в течение некоторого времени. Какую реакцию осуществила Клеопатра? Какое соединение она принимала?
Клеопатра осуществила реакцию взаимодействия уксусной кислоты и карбоната кальция. Именно из него состоят жемчужины. В результате получилась смесь из углекислого газа, ацетата кальция и воды. Пила она именно ацетат кальция.

10. На нейтрализацию 10,6 г смеси растворов муравьиной и уксусной кислот затратили 200 г 4%-ного раствора гидроксида натрия. Рассчитайте массовые доли кислот в исходной смеси.

Карбоновые кислоты - органические вещества, молекулы которых содержат одну или несколько карбоксильных групп.

Карбоксильная группа (сокращенно —COOH) - функциональная группа карбоновых кислот - состоит из карбонильной группы и связанной с ней гидроксильной группы.

По числу карбоксильных групп карбоновые кислоты делятся на одноосновные, двухосновные и т.д.

Общая формула одноосновных карбоновых кислот R—COOH. Пример двухосновной кислоты - щавелевая кислота HOOC—COOH.

По типу радикала карбоновые кислоты делятся на предельные (например, уксусная кислота CH 3 COOH), непредельные [например, акриловая кислота CH 2 =CH—COOH , олеиновая CH 3 —(CH 2) 7 —CH=CH—(CH 2) 7 —COOH] и ароматические (например, бензойная C 6 H 5 —COOH).

Изомеры и гомологи

Одноосновные предельные карбоновые кислоты R—COOH являются изомерами сложных эфиров (сокращенно R"—COOR"") с тем же числом атомов углерода. Общая формула и тех, и других C n H 2n O 2 .

г HCOOH
метановая (муравьиная)
CH 3 COOH
этановая (уксусная)
HCOOCH 3
метиловый эфир муравьиной кислоты
CH 3 CH 2 COOH
пропановая (пропионовая)
HCOOCH 2 CH 3
этиловый эфир муравьиной кислоты
CH 3 COOCH 3
метиловый эфир уксусной кислоты
CH 3 (CH 2) 2 COOH
бутановая (масляная)

2-метилпропановая
HCOOCH 2 CH 2 CH 3
пропиловый эфир муравьиной кислоты
CH 3 COOCH 2 CH 3
этиловый эфир уксусной кислоты
CH 3 CH 2 COOCH 3
метиловый эфир пропионовой кислоты
и з о м е р ы

Алгоритм составления названий карбоновых кислот

  1. Найдите главную углеродную цепь - это самая длинная цепь атомов углерода, включающая атом углерода карбоксильной группы.
  2. Пронумеруйте атомы углерода в главной цепи, начиная с атома углерода карбоксильной группы.
  3. Назовите соединение по алгоритму для углеводородов.
  4. В конце названия допишите суффикс "-ов", окончание "-ая" и слово "кислота".

В молекулах карбоновых кислот p -электроны атомов кислорода гидроксильной группы взаимодействуют с электронами -связи карбонильной группы, в результате чего возрастает полярность связи O—H, упрочняется -связь в карбонильной группе, уменьшается частичный заряд (+) на атоме углерода и увеличивается частичный заряд (+) на атоме водорода.

Последнее способствует образованию прочных водородных связей между молекулами карбоновых кислот.

Физические свойства предельных одноосновных карбоновых кислот в значительной степени обусловлены наличием между молекулами прочных водородных связей (более прочных, чем между молекулами спиртов). Поэтому температуры кипения и растворимость в воде у кислот больше, чем у соответствующих спиртов.

Химические свойства кислот

Упрочнение -связи в карбонильной группе приводит к тому, что реакции присоединения для карбоновых кислот нехарактерны.

  1. Горение:

    CH 3 COOH + 2O 2 2CO 2 + 2H 2 O

  2. Кислотные свойства.
    Из-за высокой полярности связи O-H карбоновые кислоты в водном растворе заметно диссоциируют (точнее, обратимо с ней реагируют):

    HCOOH HCOO - + H + (точнее HCOOH + H 2 O HCOO - + H 3 O +)


    Все карбоновые кислоты - слабые электролиты. С увеличением числа атомов углерода сила кислот убывает (из-за снижения полярности связи O-H); напротив, введение атомов галогена в углеводородный радикал приводит к возрастанию силы кислоты. Так, в ряду

    HCOOH CH 3 COOH C 2 H 5 COOH


    сила кислот снижается, а в ряду

    Возрастает.

    Карбоновые кислоты проявляют все свойства, присущие слабым кислотам:

    Mg + 2CH 3 COOH (CH 3 COO) 2 Mg + H 2
    CaO + 2CH 3 COOH (CH 3 COO) 2 Ca + H 2 O
    NaOH + CH 3 COOH CH 3 COONa + H 2 O
    K 2 CO 3 + 2CH 3 COOH 2CH 3 COOK + H 2 O + CO 2

  3. Этерификация (реакция карбоновых кислот со спиртами, приводящая к образованию сложного эфира):

    В реакцию этерификации могут вступать и многоатомные спирты, например, глицерин. Сложные эфиры, образованные глицерином и высшими карбоновыми кислотами (жирными кислотами) - это жиры.

    Жиры представляют собой смеси триглицеридов. Предельные жирные кислоты (пальмитиновая C 15 H 31 COOH, стеариновая C 17 H 35 COOH) образуют твердые жиры животного происхождения, а непредельные (олеиновая C 17 H 33 COOH, линолевая C 17 H 31 COOH и др.) - жидкие жиры (масла) растительного происхождения.

  4. Замещение в углеводородном радикале:

    Замещение протекает в -положение.

    Особенность муравьиной кислоты HCOOH состоит в том, что это вещество - двуфункциональное соединение, оно одновременно является и карбоновой кислотой, и альдегидом:

    Поэтому муравьиная кислота кроме всего прочего реагирует и с аммиачным раствором оксида серебра (реакция серебряного зеркала; качественная реакция):

    HCOOH + Ag 2 O(аммиачный раствор) CO 2 + H 2 O + 2Ag

Получение карбоновых кислот

Карбоновыми кислотами называют соединения, в которых содержится карбоксильная группа:

Карбоновые кислоты различают:

  • одноосновные карбоновые кислоты;
  • двухосновные (дикарбоновые) кислоты (2 группы СООН ).

В зависимости от строения карбоновые кислоты различают:

  • алифатические;
  • алициклические;
  • ароматические.

Примеры карбоновых кислот.

Получение карбоновых кислот.

1. Окисление первичных спиртов перманганатом калия и дихроматом калия:

2. Гибролиз галогензамещенных углеводородов, содержащих 3 атома галогена у одного атома углерода:

3. Получение карбоновых кислот из цианидов:

При нагревании нитрил гидролизуется с образованием ацетата аммония:

При подкисления которого выпадает кислота:

4. Использование реактивов Гриньяра:

5. Гидролиз сложных эфиров:

6. Гидролиз ангидридов кислот:

7. Специфические способы получения карбоновых кислот:

Муравьиная кислота получается при нагревании оксида углерода (II) с порошкообразным гидроксидом натрия под давлением:

Уксусную кислоту получают каталитическим окислением бутана кислородом воздуха:

Бензойную кислоту получают окислением монозамещенных гомологов раствором перманганата калия:

Реакция Каннициаро . Бензальдегид обрабатывают 40-60% раствором гидроксида натрия при комнатной температуре.

Химические свойства карбоновых кислот.

В водном растворе карбоновые кислоты диссоциируют:

Равновесие сдвинуто сильно влево, т.к. карбоновые кислоты являются слабыми.

Заместители влияют на кислотность вследствие индуктивного эффекта. Такие заместители оттягивают электронную плотность на себя и на них возникает отрицательный индуктивный эффект (-I). Оттягивание электронной плотности приводит к повышению кислотности кислоты. Электронодонорные заместители создают положительный индуктивный заряд.

1. Образование солей. Реагирование с основными оксидами, солями слабых кислот и активными металлами:

Карбоновые кислоты - слабые, т.к. минеральные кислоты вытесняют их из соответствующих солей:

2. Образование функциональных производных карбоновых кислот:

3. Сложные эфиры при нагревании кислоты со спиртом в присутствие серной кислоты - реакция этерификации:

4. Образование амидов, нитрилов:

3. Свойства кислот обуславливаются наличием углеводородного радикала. Если протекает реакция в присутствие красного фосфора, то образует следующий продукт:

4. Реакция присоединения.

8. Декарбоксилирование. Реакцию проводят сплавлением щелочи с солью щелочного металла карбоновой кислоты:

9. Двухосновная кислота легко отщепляет СО 2 при нагревании:

Дополнительные материалы по теме: Карбоновые кислоты.

Калькуляторы по химии

Химия онлайн на нашем сайте для решения задач и уравнений.

Классификация

а) По основности (т. е. числукарбоксильных групп в молекуле):


Одноосновные (монокарбоновые) RCOOH; например:


СН 3 СН 2 СН 2 СООН;



НООС-СН 2 -СООН пропандиовая (малоновая) кислота



Трехосновные (трикарбоновые) R(COOH) 3 и т. д.


б) По строению углеводородного радикала:


Алифатические


предельные; например: СН 3 СН 2 СООН;


непредельные; например: СН 2 =СНСООН пропеновая(акриловая) кислота



Алициклические, например:



Ароматические, например:


Предельные монокарбоновые кислоты

(одноосновные насыщенные карбоновые кислоты) – карбоновые кислоты, в которых насыщенный углеводородный радикал соединен с одной карбоксильной группой -COOH. Все они имеют общую формулу C n H 2n+1 COOH (n ≥ 0); или CnH 2n O 2 (n≥1)

Номенклатура

Систематические названия одноосновных предельных карбоновых кислот даются по названию соответствующего алкана с добавлением суффикса - овая и слова кислота.


1. НСООН метановая (муравьиная) кислота


2. СН 3 СООН этановая (уксусная) кислота


3. СН 3 СН 2 СООН пропановая (пропионовая) кислота

Изомерия

Изомерия скелета в углеводородном радикале проявляется, начиная с бутановой кислоты, которая имеет два изомера:




Межклассовая изомерия проявляется, начиная с уксусной кислоты:


CH 3 -COOH уксусная кислота;


H-COO-CH 3 метилформиат (метиловый эфир муравьиной кислоты);


HO-CH 2 -COH гидроксиэтаналь (гидроксиуксусный альдегид);


HO-CHO-CH 2 гидроксиэтиленоксид.

Гомологический ряд

Тривиальное название

Название по ИЮПАК

Муравьиная кислота

Метановая кислота

Уксусная кислота

Этановая кислота

Пропионовая кислота

Пропановая кислота

Масляная кислота

Бутановая кислота

Валериановая кислота

Пентановая кислота

Капроновая кислота

Гексановая кислота

Энантовая кислота

Гептановая кислота

Каприловая кислота

Октановая кислота

Пеларгоновая кислота

Нонановая кислота

Каприновая кислота

Декановая кислота

Ундециловая кислота

Ундекановая кислота

Пальмитиновая кислота

Гексадекановая кислота

Стеариновая кислота

Октадекановая кислота

Кислотные остатки и кислотные радикалы

Кислотный остаток

Кислотный радикал (ацил)

НСООН
муравьиная


НСОО-
формиат


СН 3 СООН
уксусная

СН 3 СОО-
ацетат

СН 3 СН 2 СООН
пропионовая

СН 3 СН 2 СОО-
пропионат

СН 3 (СН 2) 2 СООН
масляная

СН 3 (СН 2) 2 СОО-
бутират

СН 3 (СН 2) 3 СООН
валериановая

СН 3 (СН 2) 3 СОО-
валериат

СН 3 (СН 2) 4 СООН
капроновая

СН 3 (СН 2) 4 СОО-
капронат

Электронное строение молекул карбоновых кислот


Показанное в формуле смещение электронной плотности в сторону карбонильного атома кислорода обусловливает сильную поляризацию связи О-Н, в результате чего облегчается отрыв атома водорода в виде протона - в водных растворах происходит процесс кислотной диссоциации:


RCOOH ↔ RCOO - + Н +


В карбоксилат-ионе (RCOO -) имеет место р, π-сопряжение неподеленной пары электронов атома кислорода гидроксильной группы с р-облаками, образующими π- связь, в результате происходит делокализация π- связи и равномерное распределение отрицательного заряда между двумя атомами кислорода:



В связи с этим для карбоновых кислот, в отличие от альдегидов, не характерны реакции присоединения.

Физические свойства


Температуры кипения кислот значительно выше температур кипения спиртов и альдегидов с тем же числом атомов углерода, что объясняется образованием циклических и линейных ассоциатов между молекулами кислот за счет водородных связей:


Химические свойства

I. Кислотные свойства

Сила кислот уменьшается в ряду:


НСООН → СН 3 СООН → C 2 H 6 COOH → ...

1. Реакции нейтрализации

СН 3 СООН + КОН → СН 3 СООК + н 2 O

2. Реакции с основными оксидами

2HCOOH + СаО → (НСОО) 2 Са + Н 2 O

3. Реакции с металлами

2СН 3 СН 2 СООН + 2Na → 2СН 3 СН 2 COONa + H 2

4. Реакции с солями более слабых кислот (в т. ч. с карбонатами и гидрокарбонатами)

2СН 3 СООН + Na 2 CO 3 → 2CH 3 COONa + CO 2 + Н 2 O


2НСООН + Mg(HCO 3) 2 → (НСОО) 2 Мg + 2СO 2 + 2Н 2 O


(НСООН + НСО 3 - → НСОО - + СO2 +Н2O)

5. Реакции с аммиаком

СН 3 СООН + NH 3 → CH 3 COONH 4

II. Замещение группы -ОН

1. Взаимодействие со спиртами (реакции этерификации)


2. Взаимодействие с NH 3 при нагревании (образуются амиды кислот)



Амиды кислот гидролизуются с образованием кислот:




или их солей:



3. Образование галогенангидридов

Наибольшее значение имеют хлорангидриды. Хлорирующие реагенты - PCl 3 , PCl 5 , тионилхлорид SOCl 2 .



4. Образование ангидридов кислот (межмолекулярная дегидратация)



Ангидриды кислот образуются также при взаимодействии хлорангидридов кислот с безводными солями карбоновых кислот; при этом можно получать смешанные ангидриды различных кислот; например:




III. Реакции замещения атомов водорода у α-углеродного атома



Особенности строения и свойств муравьиной кислоты

Строение молекулы


Молекула муравьиной кислоты, в отличие от других карбоновых кислот, содержит в своей структуре альдегидную группу.

Химические свойства

Муравьиная кислота вступает в реакции, характерные как для кислот, так и для альдегидов. Проявляя свойства альдегида, она легко окисляется до угольной кислоты:



В частности, НСООН окисляется аммиачным раствором Ag 2 O и гидроксидом меди (II) Сu(ОН) 2 , т. е. дает качественные реакции на альдегидную группу:




При нагревании с концентрированной H 2 SO 4 муравьиная кислота разлагается на оксид углерода (II) и воду:



Муравьиная кислота заметно сильнее других алифатических кислот, так как карбоксильная группа в ней связана с атомом водорода, а не с электроно-донорным алкильным радикалом.

Способы получения предельных монокарбоновых кислот

1. Окисление спиртов и альдегидов

Общая схема окисления спиртов и альдегидов:



В качестве окислителей используют KMnO 4 , K 2 Cr 2 O 7 , HNO 3 и другие реагенты.


Например:


5С 2 Н 5 ОН + 4KMnO 4 + 6H 2 S0 4 → 5СН 3 СООН + 2K 2 SO 4 + 4MnSO 4 + 11Н 2 O

2. Гидролиз сложных эфиров


3. Окислительное расщепление двойных и тройных связей в алкенах и в алкинах


Способы получения НСООН (специфические)

1. Взаимодействие оксида углерода (II) с гидроксидом натрия

СO + NaOH → HCOONa формиат натрия


2HCOONa + H 2 SO 4 → 2НСООН + Na 2 SO 4

2. Декарбоксилирование щавелевой кислоты


Способы получения СН 3 СООН (специфические)

1. Каталитическое окисление бутана


2. Синтез из ацетилена


3. Каталитическое карбонилирование метанола


4. Уксуснокислое брожение этанола


Так получают пищевую уксусную кислоту.

Получение высших карбоновых кислот

Гидролиз природных жиров


Непредельные монокарбоновые кислоты

Важнейшие представители

Общая формула алкеновых кислот: C n H 2n-1 COOH (n ≥ 2)


CH 2 =CH-COOH пропеновая (акриловая) кислота



Высшие непредельные кислоты

Радикалы этих кислот входят в состав растительных масел.


C 17 H 33 COOH - олеиновая кислота, или цис -октадиен-9-овая кислота


Транс -изомер олеиновой кислоты называется элаидиновой кислотой.


C 17 H 31 COOH - линолевая кислота, или цис, цис -октадиен-9,12-овая кислота




C 17 H 29 COOH - линоленовая кислота, или цис, цис, цис -октадекатриен-9,12,15-овая кислота

Кроме общих свойств карбоновых кислот, для непредельных кислот характерны реакции присоединения по кратным связям в углеводородном радикале. Так, непредельные кислоты, как и алкены, гидрируются и обесцвечивают бромную воду, например:



Отдельные представители дикарбоновых кислот

Предельные дикарбоновые кислоты HOOC-R-COOH


HOOC-CH 2 -COOH пропандиовая (малоновая) кислота, (соли и эфиры - малонаты)


HOOC-(CH 2) 2 -COOH бутадиовая (янтарная) кислота, (соли и эфиры - сукцинаты)


HOOC-(CH 2) 3 -COOH пентадиовая (глутаровая) кислота, (соли и эфиры - глутораты)


HOOC-(CH 2) 4 -COOH гексадиовая (адипиновая) кислота, (соли и эфиры - адипинаты)

Особенности химических свойств

Дикарбоновые кислоты во многом сходны с монокарбоновыми, однако являются более сильными. Например, щавелевая кислотасильнее уксусной почти в 200 раз.


Дикарбоновые кислоты ведут себя как двухосновные и образуют два ряда солей - кислые и средние:


HOOC-COOH + NaOH → HOOC-COONa + H 2 O


HOOC-COOH + 2NaOH → NaOOC-COONa + 2H 2 O


При нагревании щавелевая и малоновая кислоты легко декарбоксилируются: